Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Evaluation of oxidation efficiency of hydrophobic palladium catalyst for $$^{3}$$H monitoring in radioactive gaseous waste

Furutani, Misa; Kometani, Tatsunari; Nakagawa, Masahiro; Ueno, Yumi; Sato, Junya; Iwai, Yasunori*

Hoken Butsuri (Internet), 55(2), p.97 - 101, 2020/06

Herein, an oxidation catalyst was introduced after heating it to 600$$^{circ}$$C to oxidize tritium gas (HT) existing in exhaust into tritiated water vapor (HTO). This study aims to establish a safer $$^{3}$$H monitoring system by lowering the heating temperature required for the catalyst. In these experiments, which were conducted in the Nuclear Science Research Institute, Japan Atomic Energy Agency, cupric oxide, hydrophobic palladium/silicon dioxide (Pd/SiO$$_{2}$$), and platinum/aluminum oxide (Pt/Al$$_{2}$$O$$_{3}$$) catalysts were ventilated using standard hydrogen gas. After comparing the oxidation efficiency of each catalyst at different temperatures, we found that the hydrophobic Pd/SiO$$_{2}$$ and Pt/Al$$_{2}$$O$$_{3}$$ catalysts could oxidize HT into HTO at 25$$^{circ}$$C.

Journal Articles

NiO/Nb$$_{2}$$O$$_{5}$$/C hydrazine electrooxidation catalysts for anion exchange membrane fuel cells

Sakamoto, Tomokazu*; Masuda, Teruyuki*; Yoshimoto, Koji*; Kishi, Hirofumi*; Yamaguchi, Susumu*; Matsumura, Daiju; Tamura, Kazuhisa; Hori, Akihiro*; Horiuchi, Yosuke*; Serov, A.*; et al.

Journal of the Electrochemical Society, 164(4), p.F229 - F234, 2017/01

 Times Cited Count:13 Percentile:43.47(Electrochemistry)

Journal Articles

Evaluation of oxidation efficiency of hydrophobic palladium catalyst for $$^{14}$$C monitoring in gaseous radioactive waste

Ueno, Yumi; Nakagawa, Masahiro; Sato, Junya; Iwai, Yasunori

Hoken Butsuri, 51(1), p.7 - 11, 2016/03

In the Nuclear Science Research Institute, Japan Atomic Energy Agency (JAEA), in order to oxidize $$^{14}$$C, which exists in various chemical forms in exhaust, into $$^{14}$$CO$$_{2}$$, a copper oxide (CuO) catalyst is introduced after heating to 600$$^{circ}$$C. Our goal was to establish a safer $$^{14}$$C monitoring system by lowering the heating temperature required for the catalyst; therefore, we developed a new hydrophobic palladium/silicon dioxide (Pd/SiO$$_{2}$$) catalyst that makes the carrier's surface hydrophobic. In these experiments, catalysts CuO, platinum/aluminum oxide (Pt/Al$$_{2}$$O$$_{3}$$), palladium/zirconium dioxide (Pd/ZrO$$_{2}$$), hydrophobic Pd/SiO$$_{2}$$, and hydrophilic Pd/SiO$$_{2}$$ were ventilated with standard methane gas, and we compared the oxidation efficiency of each catalyst at different temperatures. As a result, we determined that the hydrophobic Pd/SiO$$_{2}$$ catalyst had the best oxidation efficiency. By substituting the currently used CuO catalyst with the hydrophobic Pd/SiO$$_{2}$$ catalyst, we will be able to lower the working temperature from 600$$^{circ}$$C to 300$$^{circ}$$C and improve the safety of the monitoring process.

JAEA Reports

A Basic study on electrolytic decomposition of butylamine; A Study on decomposition of butylamine solvent washing reagent

Kamei, Kazushige; Hotoku, Shinobu; Asakura, Toshihide; Watanabe, Makio; Uchiyama, Gunzo; Fujine, Sachio

JAERI-Research 2000-021, p.29 - 0, 2000/03

JAERI-Research-2000-021.pdf:1.37MB

no abstracts in English

Journal Articles

Techniques for safety handling of tritium

Saeki, Masakatsu

NIRS-M-42, p.116 - 128, 1983/00

no abstracts in English

JAEA Reports

Oral presentation

7 (Records 1-7 displayed on this page)
  • 1